Demême, lorsque l'on connaît une valeur initiale (prix d'un produit, nombre d'habitants, etc.), on peut calculer la valeur obtenue après une certaine baisse en pourcentage. Un ordinateur qui vaut initialement 549€ est soldé à -20 %.
Le9 août 2022. Déjà à un niveau très élevé, le prix du lait va encore augmenter à cause de la sécheresse historique en cours en France, car les éleveurs n’ont plus assez d’herbe pour nourrir leurs vaches, avec des conséquences en cascade sur l’ensemble des produits laitiers. « Les augmentations de prix, qui existent depuis
Lesprix des aliments de base ont augmenté en septembre de 2,9% par rapport au mois d'août et de 10% sur un an, malgré une baisse des prix des céréales, a annoncé jeudi l'Organisation des Nations Unies pour l'alimentation et l'agriculture (FAO).
Vay Tiền Nhanh. Mathématiques de nouvelles questionsMathématiques, 0252, dynBonjour, je ne comprends pas l’exercice numéro 3, toute explication est la bienvenue. merci d’avanceRéponses Mathématiques, 0544, bebecac2Pouvez vous m’aider g= 74y+2+8y-3+5y+16y-4 h= 9y+27y-3+6+3y5y++78y-2Réponses Mathématiques, 0544, ChloekldBonsoir pourriez-vous m’aider pour se dm svp je comprends pas je vous mes le dm si dessous bien a vousRéponses J’ai un exercice suite à mon dm de maths et je galère un pourriez-vous m’aider s’il vous plaît. d’avance lucky luke veut tirer précisément pour toucher le chapeau d’avrell. taille d’avrell 7 pieds soit 2,13 distance du sol au pistolet. distance du sol au pistolet ps = 1m distance du pistolet à avrell pa = 6m le triangle pac est rectangle en a calculer la distance parcouru par la balle pour aller du pistolet de lucky luke jusqu’au chapeau d’avrell, soit pc, en démontrant la réponse. arrondir pc au dm prèsRéponses Éducation civique, 0155Mathématiques, 1343Mathématiques, 1804Informatique, 1435Mathématiques, 1234Français, 2233Français, 2234Mathématiques, 2234Mathématiques, 2234Mathématiques, 2234
2nd – Exercices corrigés Exercice 1 On augmente une quantité de $2\%$. Quel est le coefficient multiplicateur associé à cette augmentation? $\quad$ On diminue une quantité de $6\%$. Quel est le coefficient multiplicateur associé à cette diminution? $\quad$ On augmente une quantité de $17\%$. Quel est le coefficient multiplicateur associé à cette augmentation? $\quad$ On diminue une quantité de $13\%$. Quel est le coefficient multiplicateur associé à cette diminution? $\quad$ Correction Exercice 1 On augmente une quantité de $2\%$. Le coefficient multiplicateur associé à cette augmentation est $CM_1=1+\dfrac{2}{100}=1,02$. $\quad$ On diminue une quantité de $6\%$. Le coefficient multiplicateur associé à cette diminution est $CM_2=1-\dfrac{6}{100}=0,94$. $\quad$ On augmente une quantité de $17\%$. Le coefficient multiplicateur associé à cette augmentation est $CM_3=1+\dfrac{17}{100}=1,17$. $\quad$ On diminue une quantité de $13\%$. Le coefficient multiplicateur associé à cette diminution est $CM_4=1-\dfrac{13}{100}=0,87$. $\quad$ [collapse] $\quad$ Exercice 2 Le coefficient multiplicateur associé à une évolution est égal à $1,36$. Précisez cette évolution. $\quad$ Le coefficient multiplicateur associé à une évolution est égal à $0,71$. Précisez cette évolution. $\quad$ Le coefficient multiplicateur associé à une évolution est égal à $1,05$. Précisez cette évolution. $\quad$ Le coefficient multiplicateur associé à une évolution est égal à $0,62$. Précisez cette évolution. $\quad$ Correction Exercice 2 Le coefficient multiplicateur associé à une évolution est égal à $1,36$. On a $1,36=1+\dfrac{36}{100}$. Il s’agit donc d’une augmentation de $36\%$. $\quad$ Le coefficient multiplicateur associé à une évolution est égal à $0,71$. On a $0,71=1-\dfrac{29}{100}$. Il s’agit donc d’une diminution de $29\%$. $\quad$ Le coefficient multiplicateur associé à une évolution est égal à $1,05$. On a $1,05=1+\dfrac{5}{100}$. Il s’agit donc d’une augmentation de $5\%$. $\quad$ Le coefficient multiplicateur associé à une évolution est égal à $0,62$. On a $0,62=1-\dfrac{38}{100}$. Il s’agit donc d’une baisse de $38\%$. $\quad$ [collapse] $\quad$ Exercice 3 Le prix d’un article était initialement de $120$ €. Il augmente de $6\%$. Quel est le nouveau prix? $\quad$ Correction Exercice 3 Le nouveau prix est $120\times \left1+\dfrac{6}{100}\right=120\times 1,06=127,20$ €. $\quad$ [collapse] $\quad$ $\quad$ Exercice 4 Le salaire d’un employé était initialement de $1~800$ €. Il augmente de $2\%$. Quel est le nouveau salaire? $\quad$ Correction Exercice 4 Le nouveau salaire est $1~800\times \left1+\dfrac{2}{100}\right=1~800\times 1,02=1~836$ €. $\quad$ [collapse] $\quad$ Exercice 5 Une usine a fabriqué $40~000$ objets en 2019. Quelle sera la production en 2020 si celle-ci baisse de $1\%$? $\quad$ Correction Exercice 5 L’usine fabriquera $40~000\times \left1-\dfrac{1}{100}\right=40~000\times 0,99=39~600$ objets en 2020. $\quad$ [collapse] $\quad$ Exercice 6 La facture moyenne annuelle d’électricité en 2018 était de $810$ €. Si celle-ci baisse de $0,2\%$ en 2019 quelle sera son nouveau montant? $\quad$ Correction Exercice 6 Le nouveau montant sera $810\times \left1-\dfrac{0,2}{100}\right=810\times 0,998=808,38$ €. $\quad$ [collapse] $\quad$ Exercice 7 Le nombre d’abonnés à une newsletter est passé en une année de $40~000$ à $50~000$ abonnés. Quel est le taux d’évolution associé à cette augmentation? $\quad$ Correction Exercice 7 On a $\dfrac{50~000}{40~000}=1,25=1+\dfrac{25}{100}$ Le nombre d’abonnés à donc augmenté de $25\%$ en un an. $\quad$ [collapse] $\quad$ Exercice 8 Un site web a eu $130~000$ visiteurs en octobre et $145~000$ visiteurs en novembre de la même année. Quel est le taux d’évolution associé à cette augmentation, arrondi à $0,1\%$ près? $\quad$ Correction Exercice 8 $\dfrac{145~000}{130~000}\approx 1,115$. Or $1,115=1+\dfrac{11,5}{100}$. Le nombre de visiteurs a donc augmenté d’environ $11,5\%$ en un mois. $\quad$ [collapse] $\quad$ Exercice 9 Lors de sa première semaine de sortie en salle un film a été vu par $325~000$ spectateurs. La semaine suivante $312~000$ spectateurs sont allés le voir. Quel est le taux d’évolution associé à cette diminution? $\quad$ Correction Exercice 9 $\dfrac{312~000}{325~000}=0,96=1-\dfrac{4}{100}$. Le nombre de spectateurs étant allés voir ce film a baissé de $4\%$ en une semaine. $\quad$ [collapse] $\quad$ Exercice 10 Une société vend des forfaits téléphoniques. Elle comptait $2,7$ millions d’abonnés en 2018 et $2,6$ millions d’abonnés en 2019. Quel est le taux d’évolution associé à cette diminution, arrondi à $0,1\%$ près? $\quad$ Correction Exercice 10 $\dfrac{2,6}{2,7}\approx 0,963$ or $0,963=1-\dfrac{3,7}{100}$. Le nombre d’abonnés a donc baissé d’environ $3,7\%$ en un an. $\quad$ [collapse] $\quad$ Exercice 11 Après une augmentation de $3\%$ un article coûte $158,62$ €. Quel était le prix initial? $\quad$ Correction Exercice 11 On appelle $P$ le prix initial. On a donc $P\times \left1+\dfrac{3}{100}\right=158,62$ $\ssi 1,03P=158,62$ $\ssi P=\dfrac{158,62}{1,03}$ $\ssi P=154$. L’article coûtait donc $154$ € initialement. $\quad$ [collapse] $\quad$ Exercice 12 En 2019 la température annuelle moyenne à Paris était de $14,2$ °C. Elle a augmenté de $10\%$ par rapport à celle constatée en 2000. Quelle était la température annuelle moyenne en 2000, arrondie à $0,1$ °C près? $\quad$ Correction Exercice 12 On appelle $T$ la température annuelle moyenne à Paris en 2000. On a donc $T\times \left1+\dfrac{10}{100}\right=14,2$ $\ssi 1,1T=14,2$ $\ssi T=\dfrac{14,2}{1,1}$ Ainsi $T\approx 12,9$. La température annuelle moyenne à Paris en 2000 était d’environ $12,9$ °C. $\quad$ [collapse] $\quad$ Exercice 13 Le chiffre d’affaires d’une entreprise était de $1,421$ millions d’euros en 2018 ce qui représente une baisse de $2\%$ par rapport à l’année précédente. Quel était le chiffre d’affaires de cette entreprise en 2017? $\quad$ Correction Exercice 13 On appelle $C$ le chiffre d’affaires en 2017. On a donc $C\times \left1-\dfrac{2}{100}\right=1,421$ $\ssi 0,98C=1,421$ $\ssi C=\dfrac{1,421}{0,98}$ $\ssi C=1,45$. Le chiffre d’affaires de cette entreprise était de $1,45$ millions d’euros en 2017. $\quad$ [collapse] $\quad$ Exercice 14 Une ville compte $110~954$ habitants en 2019, ce qui représente une baisse de $7,9\%$ par rapport à l’année 1970. Combien d’habitants, arrondi à l’unité, comptait celle ville en 1970? $\quad$ Correction Exercice 14 On appelle $N$ le nombre d’habitants de cette ville en 1970. On a ainsi $N\times \left1-\dfrac{7,9}{100}\right=110~954$ $\ssi 0,921N=110~954$ $\ssi N=\dfrac{110~954}{0,921}$ Ainsi $N\approx 120~471$. Il y avait donc environ $120~471$ habitants dans cette ville en 1970. $\quad$ [collapse] $\quad$
l'essentiel Un écart de 10 centimes sépare actuellement le prix au litre du SP956-E10, qui a perdu 0,5 centime, du gazole qui a augmenté de 5 centimes. Selon les derniers chiffres du ministère de la Transition écologique, lundi 22 août, le prix moyen du litre de gazole s'affichait à 1,84 euro la semaine dernière, soit 5 centimes de plus que la semaine précédente, rapporte Le Parisien. Le litre de SP95-E10, lui, était à 1,73 euro, soit une baisse de 0,5 centime. Une baisse qui se poursuit depuis le mois de juin et qui est liée à la baisse du prix du baril de pétrole. Selon nos confrères, le baril de brent atteignait les alentours de 95 dollars, loin du mois de mars où il frôlait les 120 dollars. A lire aussi Prix du carburant 3 astuces pour faire des économies sur la route des vacances Au contraire le gazole repart à la hausse. En cause la guerre en Ukraine. Comme l'explique un porte-parole d'un géant pétrolier à nos confrères, "la France achète moins d'hydrocarbures russes." Par contre, elle en achète pour plus cher en Amérique du Nord ou au Moyen-Orient. Ce qui a un effet sur le prix à la pompe.
un prix augmente de 10 puis baisse de 10